Robert Hodges, Potter

Article by Barbara Francisco

Washington, North Carolina, has many talented artists and craftsmen, one of whom is Robert Hodges. Before I knew Robert was an accomplished potter, I found him to be an interesting, dynamic person.

My first exposure to Robert Hodges was through St. Peter’s Episcopal Church. One Sunday this distinguished-looking, gray-haired man with a loud voice that commands attention substituted for the regular teacher of our adult class. I don’t remember what that particular lesson was about, but I do remember that no one, I mean no one, slept through that lesson. I knew that Robert sang in the choir, but what I didn’t know was that Robert is a very knowledgeable Bible scholar. Robert is a very colorful speaker, whether he is speaking before an adult Sunday School class or in his pottery workshop at the Beaufort County Arts Council.

The Brown Library honors local artists and craftsmen from time to time by putting their work on display at the library for about a month. I was in the library one particular day when an exhibit of pottery was on display. Being a collector of pottery, I was especially curious about the artist who had made the beautiful pottery on display.
Ironically, the potter was the Robert Hodges who had taught our Sunday School class.

In addition to being a Bible scholar, excellent speaker and outstanding potter, Robert Hodges paints houses and also on canvas, teaches pottery classes, is actively involved in church work and civic work, and is presently building a house himself. Robert, originally from California, has travelled extensively. He has lived in Washington now for several years with his wife, Nancy.

When Dr. Armstrong asked me if I knew of anyone I could interview for Life on the Pamlico, I immediately thought of Robert Hodges. As busy as he is, Robert was kind enough to grant us an interview one Wednesday evening during his pottery class at the Arts Council building. It was interesting to see Robert in action doing what he loves to do most, teaching pottery. Robert has a good rapport with his students, who realize they are being taught the art of pottery making by a master artist.

When we arrived at the Arts Council building, Robert was working with two students. He was instructing them in the skills and techniques used in making pottery.

Well, you need to get the clay wedged, which means you get it all the same consistency and no air.

Is that what they're doing now?

They're getting it round now. We buy it wedged in boxes. But they have to get it round so they can put it on the wheel head so there's no air trapped between the wheel head and the clay, because air is a problem in the throwing and in firing.

What is throwing?

She [a student] just threw it [the clay] on the wheel head. Now that is probably where the word originated, but nobody really knows.

So it's literally throwing?

We call putting the clay on the wheel "throwing." That's what it is called. The only time we throw it is when we throw it onto the wheel so it will stick to the wheel head, and then they turn on the motors and literally pull it. It always occurs in two stages. The first stage is the time you do your throwing. Then, when it gets what we call "leather hard," then we turn it upside down and trim the bottom. So every bowl is done in two steps: the throwing stage when you form it and then when you trim it or assemble it. This is in the bone-dry stage. It is very fragile. You can sand it at this stage, but it cannot be bent or anything like that.

The handle was attached at the leather hard stage. The handle was formed and attached to the thrown piece at that time, bottom was trimmed, signature. Then we let it dry, get it bone dry, and then we can sand it at this stage, but we can't do anything else. It's very fragile. It would break. It's still water soluble.

The next step would be to fire it in the kiln; this piece over here has been fired in the kiln and is now bisque ware, which is a French word that means "half baked." It's
half done. It's no longer water soluble.

So we can paint [the bisque] with a water-based glaze, put all the glaze material on it, and then we stick it in the kiln again and fire it one more time when we take it up to glaze temperature in which we take the clay which is now very porous and make it vitrified, which means it will now hold water; nothing will go through it.

The glaze is put on as a decorative feature and to make it sanitary on the inside, nice smooth glass finish, but it would not be needed to make the vessel hold water. It is absolutely vitrified, and water would not go through the clay at that stage.

If you wanted a piece of pottery with the glaze—I've seen it like this before—what would you do?

You just fire it once. Just take it all the way without the bisque stage. The only reason you do bisque is so that you can apply glaze.

I think it's pretty like that.

Oh, well, it gets different. I think I have a piece—there it is—unglazed, see? This is unglazed, then glazed on the inside. So it's nice and smooth for holding a liquid, cleaning and so forth. And then nothing on the outside except carving, but that's the fired, but unglazed. But, of course, we mix the clay to anything you want. Now this one's got little iron specks in it to give it a little speckled look.

What do you put in it to get it speckled?

Colemite or flecks of iron.

When would that go on?

It's mixed in the clay. When I buy my clay, I buy it pre-mixed. If I had pug mill, I could mix the clays. You have to mix the clays to get it to fire at the temperature you wish it to become vitrified. In other words, a clay can be a low-fire clay (it will vitrify at a low temperature) or middle range which we call stoneware; or we can go up into high fire, porcelain and those things. So if we fire them at different temperatures, then it becomes vitrified.

If I took a low-fire clay and fired it in a high-fired kiln, it would just melt and be all puddle on the shelf. So you have to have a clay that will vitrify at the temperature you wish to fire it at, and that the glaze that goes on the outside of it will fit, because it all shrinks, and it all has to shrink at the same rate so that it fits the pot. So I have to mix the glaze to fit the clay. And I have to mix the clay so that it will melt and become vitrified at the temperature I want it to.

Is porcelain different?

When it starts out, it's all the same looking. For porcelain, we'd use a white china clay. A white china clay melts at a very high temperature, so we put a flux in. Now originally, they put bone into it to make it flux when they discovered that in Germany.

Of course, the Chinese had found it out sooner. They could take this white clay and put a bone in it and get it to flux and melt at a temperature that they could reach in
their kilns, and then they had white bone china, porcelain, or whatever you want to call it. Different places, different names.

It was originally used in Europe. They powdered their wigs with the clay because they couldn't do anything with it. It wasn't till Germany, they discovered how to melt clay. It was a secret. Everybody's kept secrets in pottery. We still do.

Robert explained that the snakeslike coil of clay is an early technique in pottery making.

You just roll a piece of coil and put coil to coil. Then you wrap those together and you really build the bowl. Coil building was the way that most all people built bowls. Now we do slab building where we roll clay out in a large slab. Now this is slab here. This is a flat piece of clay that we roll out. We get some sticks, we take a rolling pin so that it's all the same thickness, and then we put it around a form and put it all together. So this is a hand-built slab cylinder.

You mean you just put the bottom piece in?

Oh, yes! This is a slab where we squeeze it together. This would skim around, and this lip is attached to this.

Do you leave the form inside until it dries?

Just until it is assembled, because clay shrinks. It shrinks. This shrinks 14% from the time we assemble it till we finally get it in the kiln. So anything that you want, you have to go bigger.

Now the thing is that clay shrinks as it dries. (If I assemble something and the clay is two different densities of moisture content, then I have to put it in somewhere to slow it down so that it dries slowly and that everything shrinks at the same rate. If I put it in an oven, which normally we do six to eight hours after, in a different clay, thicker, it could dry faster because it's exposed to a lot of air; it could dry slower, depending. So we put it into a damp box where we control [moisture content].

Where did the Indians get their clay?
Right out of the earth?

Out of the ground, yes.

Like red clay soil?

Well, you see the top soil, of course, has go lots of flax (or plants) in it, but down below we have the puddles where the sediments come down, and we have clay. And clay is really just various minerals set down in puddles, and then glaze is natural materials, too. And there's lots of natural clays and glaze materials in big puddles and so forth. All we do is mine it and mix it so that we can get it to melt at the temperature we wish it to melt.

Now, if I wanted to, I could go down here and find clay anywhere along the river and mine it. But the first thing I would have to do is to make a test of it and discover at what temperature it melts. And what I do is we make a bar and drive it across two stilts in a kiln and observe as to what time it sags, when it sags. That's its temperature. In
other words, I've got to quit it before it sags. I would test it to see how much it shrank, how much water it absorbed, other things. Then that would be the temperature that that clay fires at. Then I could just run a whole pottery and fire everything at that temperature.

How can you look at a finished product and evaluate the skill and talent that went into it?

The first thing I do is turn the pot over, upside down, and look at the bottom because if the potter has taken the time to trim and clean up his bottom, you assume, which may be wrong, that he has built the rest of the pot just as well. Here's a bowl that you see I've trimmed and put a foot on it. I've trimmed it all so that, in other words, if I'm spending time to put the little detail on the bottom, I'm putting my labor into the pot. I care just as much about the bottom as I do the top. A lot of pieces that you buy if you turn them upside down, you'll see that the potter didn't care anything about it.

I don't know if I have a piece. Here's a piece that's not mine. They just cut that right off of the wheel, did nothing to the bottom, didn't do a thing. Didn't smooth it. Feel that. See, that would scratch the table. It's a nice looking piece—you know, it's been fired and everything—but they really could have spent another five minutes and made that bottom so that it wouldn't scratch the table.
Robert explains the importance of smoothing the bottom of a pot.

Is the signature of the potter a criterion?

Well, the thing is that if you're doing this as an "artist," you're trying to make it attractive and pleasant to the eye. Now I can fool the eye and make the eye think that it's round when it's not round. We do tricks.

Like this pot. This is a bowl one of the girls did today. It's not perfectly round. It's a little lopsided, but you would have to really look, because what we did when we put it on the wheel, we trimmed the bottom first and thinned it down and curved it. But this side is much thicker than that side.
So we can fool the eye into thinking it's a nice round piece.

Well, would a much more expert potter be able to make it nearer to being round?

Well, yes. I can throw a perfectly round piece. But do I really care whether it's perfectly round?

Well, that's what I was getting at. That's not really a mark of excellence?

I don't think so. If you're striving for that fact that I want to make it perfectly round, fine. But that isn't what I'm striving for. What I'm striving for is to have the walls the same thickness all the way around, 'cause clay shrinks as it dries. So if this side dries faster than that, it's shrinking faster than that; it sets up the strain in the pot that makes it weak throughout the firing and everything else. And it may actually tilt a little in there, and it may not. But you could bang it, and it's gonna break, because of the stress that's set up in the clay. So what I'm striving for is the uniform thickness that it will dry and shrink. Or I have to put it in the box and really slow it down in its drying.

When you put a piece in the box, it has not been fired at all?

Oh, no. It's all wet. You see, clay has a property that if one part of the clay is wet, the other's dry, the water will move from the wet to the dry. So that's one of the properties that allow us to assemble clay together is that the moisture will travel from the wet to the dry air.
The property that makes clay useful is that it's plastic. You can make the clay take a shape and keep that shape. It's plastic. It'll stay where you put it. That is one of the properties that make clay so that we can make vessels.

The potter must exert equal pressure on the clay.
Now what I'm doing is letting that clay through my hands. Okay, now, I'm forcing it to become even, equalize itself around. But it's plastic, and I can take it or I can bend it, and it will hold that shape. Whatever shape I put it, it will stay. It makes a real good building material. But whatever I do, it will stay that way. Then, when it gets to the leather-hard stage, I can carve on it, put handles on it and do all kinds of things at that stage. And then when it's bone dry, all I can do is sand it. But there are different characteristics at different stages so that I can do different things with this. But then it gets strong when I fire it.

Like now, it's extremely fragile. If I put it out in the sun, it would never get strong, but once I fire it, it gets built. The water goes into a chemical reaction and makes it strong. If I just take clay and stretch it, it is not strong because the molecules look like shingles as best as we can tell from the electronic microscope. And they're going every which way as we dig it, or puddle it, whatever.

But when we pressure it, when we roll it into coils, or the slab building or in the wheel throwing, we are pressing that clay or squeezing it. And what we do is force those molecules all to interlock, and it becomes very strong. That's the only way you have to coil build and slab build, and all this is for strength. If you just take it and carve it, it has no where near the strength than if you had squeezed and pressured.

So in sculptured clay, you put in a lot of grog, which is clay that has been fired and made stronger and then ground back up and mixed into it. So the grog will give it strength if you're doing a sculpture. But a sculptured piece just doesn't have the strength that a thrown piece or a slab suit or a rolled piece has. So clay has to be pressured, and it's got to be fired. Those are the two things that make it strong. Then it'll be around forever.

What are the stages again?

Okay. We have the forming of the plastic stage. We have the leather-hard stage, and the bone-dry stage. We have the bisque stage, and then we have the final glazed, vitrified stage. So those are the stages you go through, and it's very labor intensive. It takes a long time from the time you start and the time you get it out of the kiln the second time fired.

The "craftsman" and the "artist" in the potter, Robert told us, sometimes result in ambivalence.

Well, whether it's [a bowl] shaped perfect or not depends on what you're trying to accomplish. I want a bowl that will hold fluids correctly, but I want it to look nice. You see, I don't think you should have a teapot that you can't pour tea out of without dripping all over the floor. You can see now I can make beautiful teapots if I don't care if they don't work. You see a lot of teapots that are just beautiful, but that's all they are. You might as well hang them on the wall 'cause they won't make a good pot of tea, or they won't pour good. I try to be functional yet attractive or beautiful, and that's in the eyes of the beholder.

[Talking to a student.] She had a failure. What did she do? Well, see that clay? Some-
where along the line, she stretched the clay to make it thin rather than squeeze the clay. And so, if you squeeze the clay, it's strong; but if you stretch the clay to make it thin, it's weak!

What you do as a potter and the secret of being a potter is the ability to keep your fingers the same distance apart and make all of the clay go through your fingers. Now if your fingers are slightly out and the clay goes around your fingers and not being squeezed, it gets thin. But it's been stretched rather than squeezed, and it looks the same, but it won't stand up.

For one of his students, Robert demonstrated how to form a bowl.

You get the clay centered on the wheel. Try to get it perfectly round. Then you open a hole into it which is called "opening." You get it round, clay all the way round with a hole in the center. This, then, is to pull the clay out here. This is called opening. Open up the clay and you have a bottom and a top. Now the bottom and the top have to be squeezed. You have to squeeze so that the clay is compact. If you don't, 2,000 to 3,000 years later it will have a crack.

What we do is we push in, and we squeeze the clay. As we squeeze the clay, it's got to go somewhere. It can't go down because the wheel's there. So it goes up. Then you just keep squeezing the clay and squeezing the clay until it gets taut. It is quite easy to do. You really need to know how much clay is needed to make a certain size pot. If I was to make a bowl that big, I should have some idea how much clay to start with, right?

If you want to make a bowl that size and have too much clay, what do you do?

You can cut it off. She's [his student] trimming some of the excess off the bottom now.

After a bowl has been fired, it is then glazed. Glazing, as Robert told us, is an important phase in making a bowl.

What I do, I mix my own glazes. I don't buy them. The glaze is a glass material — silica or sand. What we do, we put flux in it again to make it melt at the temperature we wish it to melt at. So I flux it so that it will melt at the temperature that my fire is.

A glaze is pure crystal clear. It's just glass, just literally glaze is a glass. All right? Now, I'm mixing some glazes here, but I have three drums which my materials come from. I have the silica which is the glass-making material. I have a flux, and it will cause the silica to melt at the temperature I want it to melt at. Then I add kaloin to make the glaze stay on the pot. So I mix kaloin, which is nothing but a clay, flux, and silica, which is sand glass-making material, and I make it so that it fits my pots.

Then to get my colors, I add oxides, iron or cobalt or copper, to give me colors. And I may add two or three oxides together to get my various colors. Then I may put in more kaloin to make it sort of a semi-rather than a gloss.

I can change the texture of the glass by varying the amount of kaloin that I add to it. I can change the color, you see. I can
change the color; and when I put it on thick or thin, I can do what I want.

It is clear that Robert knows about as much as anyone about the skills and techniques of making pottery. And, as we found out, he also knows a great deal about the history of pottery.

What is the origin of pottery?

In the Far East or the Mid East, the cradle of civilization, of course. They had pots that were hand built. The wheel was the great technological breakthrough because a potter could make, say, one or two bowls a day by hand. But with a wheel, you could turn out 50 a day, so he could mass produce pots that everybody needed for everything. And so he cornered the market. It became a trade secret.

Was this happening at other places around the world at the same time?

All over the world at the same time, different civilizations were discovering these things.

The wheel was the big breakthrough?

Oh, that was the big breakthrough. That was the first time that you could make a bowl uniform thickness throughout, and you could do it fast.

How did they drive the wheel before electricity?

Well, different ways. They've all had the wheel. Some take a stick and just wobble it
Robert Hodges explains the importance of the wheel to pottery.
like a spinning top, and they still do that. Others developed using the foot. They've all developed different methods to get the wheel to spin and the clay to spin. But the spinning wheel, of course, was the breakthrough.

But, of course, we use the wheel today for putting this hand-built pottery, as we'll call it, to an art form because we can't possibly produce a bowl anywhere near like a factory can do it in a mold with liquid clays and spray guns and all of the mass-produced molds. And so it's become an art form, the wheel, strictly in that the potters can do what we used to do. And you can't compete, of course, in price.

Which civilizations or societies are noted as being the ones first to develop pottery?

The Chinese, of course, are the most ancient. And then, of course, the Persians.

How about the American Indians?

The American Indians never really got the wheel. All they did was coil building. They found a clay, and they found out what temperature it melted at. And they learned how to fire it long enough to get it to do that, and melt that, and they did it. And they had to get glazes to fit and a lot of experimentation; but it was all the same, similar batch until they ran out of that pile of clay and would have to run out and get another pile of clay and run another test.

How did they fire it? I always thought it was sun-baked.

Oh, no. Sun baking doesn't do a thing for it.

So they would have to have a furnace of some kind?

A furnace of some kind. Now you can get clays and just put it down and sever it with wood and burn it, and it will bake and get hot enough in the coals. You just build a fire right over the whole pot and just burn it. There are still places that do this today.

And then, of course, they discovered the ovens to put it in there and keep putting the fire, and get it hotter and hotter and hotter. And, of course, as time has gone on we get hotter and hotter temperatures because we can build kilns that hold the heat in.

The Japanese, I think, were the ones that really—or the Chinese, both—who built the hill kilns where they had these kilns going up the hill and they put the wood in the bottom and it goes up like a smoke stack. And they fire maybe for two days, keep putting wood and wood and getting hotter and hotter and hotter in there. All of the pots are in this tunnel and all the fire is going by it.

Ancient potters, Robert relates, moved in the direction of mass production because of the wide-spread need for pottery and for the increased profits. The use of the wheel was the breakthrough.

If you learned how to use the wheel, and you can make 50 pots a day, and your competitor can only make one or two a day, you know, and you're selling it for the same price he is, you're a millionaire—right? Okay, and
thing I like about pottery is that none of my dishes really match.

They're all hand built. They're all artistic.

Each color is a little different.

That's right, and there's no real harm in it. We love the mold [that is, mass-produced pottery]. And we make sets of twelve. But most of the world doesn't do that. That's why I like the Japanese. You sit down at a Japanese dinner, and every piece is a pleasure to look at [because it is unique]. I'm inclined to be Japanese in my style. I want things to look great, to be beautiful.

Ceramics Monthly is the potters' fine magazine. Sometimes, it'll have functional pieces, and sometimes we'll have funky pieces. We have arguments continually, continually, you know. But if you do funky art, you're an artist. If you do functional art, you're a craftsman, you know. You're not an artist; you're a craftsman if you make pots. If you make something that is totally useless, you're an artist.

Now this Cushing—he goes hot and cold. He's a big name in pottery. People spend hundreds of dollars to have a Cushing piece, okay. This is some of his work. It comes off as functional, but he makes it so decorative that it becomes non-functional in that you can't really use it.

Isn't the distinction between somebody who's supposed to be outstanding, that is, the kind of designs they come up with?

Oh, a lot of it. I mean, you can just
about tell a Cushing pot when you see it. Just like you can tell a painter. He gets into a thing and then everything is the same thing because he hit it good and he's making a lot of money on it.

Most potters who actually make money are functional craftsmen.

People [who] run a functional pottery make a living doing functional pots. And actually nobody to speak of—there are one or two potters who sell enough funky art to make a living. All of the artists who are into funk art, as I call it, are really teachers, professors, art people. They make their living somewhere else. They do their art to try and establish their clientele. People who try to live by their art are functional potters because you can make more money selling a hundred pots at twenty bucks each than you can trying to sell one at $500 in New York City to some little old lady that wants a Cushing pot.

Robert, how did you get interested in pottery?

Well, I've always enjoyed art, even when I was in the military. My first pottery I ever bought, I bought in Korea during the Korean War in 1952-53. Koreans have some beautiful pottery. And, of course, the war was on and people were starving and there was a lot of pottery around people were selling. I bought a whole bunch of Korean pots. In fact, I have got some very nice pieces that I would like to give to some museum some day that I took out of Korea. When I got out of the Air Force, I went to school because when I was in the Air Force, they kept saying to me I should be a college graduate if I was an officer. Of course, I went in at age 19, and I kept saying, "When was I supposed to go to college, you know. I went to war, you wanted me, and you make me an officer, you know."

When did you go in the navy?

I went in the Navy in 1944, on the tenth day of July, and I was 19 years of age when I was commissioned an Ensign in the Navy. And they were desperate, you know. And I was 19; you're supposed to be 21 today to be an officer. But I was 19 then, you know, a young whippersnapper. But I had a lot of experience in the Boy Scouts. I knew all about weather and I'd studied, and I knew everything that they wanted to know. So they immediately shoved me to the front 'cause they needed us.

I got out of the Navy and joined the Air Force in 1949. And then I stayed in the Air Force all of the time, you know. You don't have college; you don't have college. And it was always held against me. Every promotion cycle, you know, I lost points because I wasn't a college graduate. You know, all officers should have been through college. So I promised myself that when I get out of the Air Force, I was going to go to school and get a degree to see what I was supposed to have known all almost 30 years, you know.

The only thing I learned was where all my fellow officers had learned to waste the time of the enlisted people. They had them standing in line because that is all they did in college. I went to ECU, and they treated me like a total idiot. Get in this line, get in that line, nobody knows anything. They
can't tell you anything. They told me to go down and pay my fees at the old cafeteria. I says, "Is there a sign on the building that says 'the old cafeteria'?" She says, "No. It's down that road." I says, "How will I know that it's the old cafeteria? What's the name on the building now?" "I don't know. It's the old cafeteria." You know, that's the kind of caliber of people they had at the college having college students go do things.

When I was in the military, I never wasted my people's time, you know. I always had my people working. If there was a line, I was upset. Why was there a line? Someone's goofed, you know. But my contemporaries couldn't care less if there was a line a thousand miles long of guys standing in line 'cause they had done it in college, and they thought that's the way. I'm the officer, and people are going to line up, boy, 'cause I'm it, you know. That's all I learned in college.

I went to Sand Hills Community College on the GI Bill. And under the GI Bill, you had to take 12 semester hours a quarter or something like that. Twelve quarter hours, I guess it is. But I paid, you know, and I could take as many courses as I wanted. I had all day to go, so I signed up for a pottery class. That is something to do, you know. And I really liked it. I enjoyed it. So the next quarter I took another pottery class, and I took a painting class. And then after that I decided I was wasting my time going to college to be a business major or historian, you know, 'cause I didn't want to go back into business, and I really liked history.

But, well, I'm going to be an artist.
So I asked them, I asked Jack, who was head of the Art Department, you know, where the good school to be in art was, and he said ECU. And I had never heard of it, didn't know where it was. And he showed me on a map, and it was near some water. So I got in my little car and drove to ECU and went in and saw the dean and says, "I'd like to come up here to go to school." I had no art portfolio, nothing, you know, nothing.
You paint, also?

I paint, but I'm not good at it. I can do it.

Do you do the designs on your pottery?

Oh, I do all that myself. I think that I do what I like. And I'm not too commercial at times 'cause people tell me, well, you ought to do it this way, you know. But I still like to do it my way. I'm not into it for money.

It is hard to put a personality such as Robert's down on paper, but I hope this interview has captured to some degree the dynamic personality of this true artist. Robert has a love for art, pottery making, history and his students. He is deeply committed to his craft. I came away from this interview with a sense of gratitude for having known someone with such a devotion to his work.